Юридический портал. Льготный консультант

Процессинг у эукариот затрагивает все виды первичных транскриптов эукариотических генов.

Процессинг у эукариот

Кэпирование представляет собой образование на 5"-конце мРНК особой структуры - кэпа (шапочки). Кэпирование происходит еще до полного завершения транскрипции и защищает 5"-конец РНК от действия нуклеаз. Кэпирование РНК осуществляется с участием GTP(гуанозинтрифосфата ), из состава которого GMP переносится на 5"-дифосфат первого нуклеотида мРНК.

Полиаденилирование осуществляется, ферментом поли(А)-полимеразой и приводит к образованию на З"-конце олиго(А)-фрагмента, содержащего 100 - 200 остатков адениловой кислоты подряд и называемого также «поли(А)-хвостом». Эта поли (А)-последовательность добавляется к РНК после присоединения кэпа . Сначала 3"-конец РНК отщепляется ферментами в точке, отстоящей на 10-35 рибонуклеотидов от консервативной последовательности ААUААА, а затем происходит полиаденилирование этого конца молекулы РНК. Поли(А)-хвост находят практически у всех мРНКэукариотических ороганизмов, за исключением транскриптов гистоновых генов. Последовательность ААUААА встречается не во всех эукариотических РНК-транскриптах. По-видимому, это связано с мутациями, препятствующими полиаденилированию. В отсутствие 3"- хвоста РНК-транскрипты быстро деградируют под действием ферментов.

Т.о. 5"-кэп и 3"-хвост чрезвычайно важны для дальнейшего процессинга и транспортировки мРНК в цитоплазму. Поли(А)-хвост определяет стабильность мРНК и время ее жизни в клетке. Кроме того, способствует выходу мРНК из ядра в цитоплазму, а также существенен для регуляции трансляции.

Механизмы сплайсинга: автокатализ РНК (Клаг,400)

Для разных типов ядерной РНК, а также для РНК мтх и хлп существуют свои собственные механизмы сплайсинга.

В зависимости от специфичности механизма сплайсинга, интроны можно разделить на несколько групп. К первой группе относятся интроны, входящие в состав первичного рРНК-транскрипта, для удаления которых не требуется дополнительных компонентов. Эти интроны сами обладают ферментативной активностью, необходимой для их вырезания. Впервые этот факт был обнаружен в 1982 г (Томас Чех с сотр.) у жгутикового простейшего тетрахимены (Tetrachymena). Из-за автокаталитических свойств самосплайсирующиеся РНК иногда называют рибозимами .

Процесс самовырезания (автоэсцизия) (рис. 145_Коничев)

(рис.12-12, Клаг) представляет собой две нуклеофильные реакции, или реакции трансэтерификации, в которых гуанозин взаимодействует с первичным итранскриптом и действует как кофактор. При этом З"-гидроксильная группа гуанозина переносится на нуклеотид, примыкающий к 5"-концу интрона. Во второй реакции эта гидроксильная группа взаимодействуетс фосфатной группой на З"-конце правого интрона, в результате интрон вырезается, а концы двух соседних экзонов соединяются с образованием зрелой мРНК.


Интрон 26S рРНК тетрахимены - IVS, состоит из 413 нуклеотидов. В результате реакции трансэтерификации без дополнительных затрат энергии осуществляется лигирование двух экзонов с образованием зрелой 26S рРНК. Вырезанный интрон затем циклизуется. Из его состава путем двухэтапного ауторасщепления освобождается фрагмент, содержащий 19 нуклеотидов, в результате чего образуя РНК длиной 376 нуклеотидов (L -19 IVS), которая и представляет собой истинный РНК-фермент (рибозим ), обладающий каталитическими свойствами. Этот рибозим обладает устойчивой структурой, имеет эндонуклеазную активность, расщепляя длинные одноцепочечные РНК, и проявляет специфичность, распознавая в о составе атакуемого субстрата тетрануклеотиды CUCU . В структуре интронов типа I выявлены характерные внутренние олигопуриновые последовательности (у тетрахимены это последовательность GGAGGG), называемые адапторными последовательностями , которые участвуют в образовании активного центра РНК-ферментов и выполняют важнейшую роль в каталитическом расщеплении РНК.

Такое самовырезание интронов характерно для пре-рРНК других простейших. Этот механизм, по-видимому, действует и при удалении интронов из первичных транскриптов иРНК и тРНК в митохондриях и хлоропластах , которые относятся к группе II .

Для вырезания интроноввторой группы также необходимы две автокаталитические реакции, но гуанозин не требуется.

Дальнейшие исследования позволили установить, что каталитической активностью обладают не только крупные РНК (~400 нуклеотидов у тетрахимены и РНКазы Р), но и короткие 13 -20-членные олигонуклеотиды, которые могут быть синтезированы in vitro. Такие рибозимы стали называть минизимами . Одна из детально исследованных моделей функционирования таких рибозимов получила название «головка молотка » (рис. 146). Третичная структура «головки молотка» стабилизируется ионами двухвалентных металлов, которые нейтрализуют отрицательно заряженные атомы кислорода фосфодиэфирных связей и одновременно соединяют фосфатные группы ковалентными связями, что существенно для образования стабильного переходного состояния (фермент-субстратного комплекса). Как и в случае катализа, осуществляемого ферментами белковой природы, рибозимы и атакуемый субстрат

(природные или синтетически полученные молекулы РНК) образуют фермент-субстратный комплекс, а затем - фермент-продуктный комплекс (см. рис. 146).

Механизмы сплайсинга: сплайсосома. (Процессинг мРНК у эукариот)

В ядерных пре-мРНК интроны могут достигать в длину 20 000 нуклеотидов. Поэтому их удаление требует более сложного механизма, чем самовырезание (автоэксцизия). (рис.12-13). Нуклеотидные последовательности на концах интронов в этих молекулах сходны: на 5"-концах часто находится динуклеотид (GU) ГУ, а на З"-конце – динуклеотид (AG) АГ. C этими последовательностями связываются молекулы специальных белков, которые формируют комплекс, называемый сплайсомой . Основной компонент сплайсосом – малые ядерные рибонуклеопротеины, или мяРНП , которые найдены только в ядре и обогащены остатками уридина. Поэтому малые ядРНК часто обозначают U1 , U2 …U6.

[Коничев, с.292. В сплайсинге пре-мРНК

у высших эукариот задействован ряд белков, а также РНК особого вида – малые ядерные РНК (мяРНК). Малые ядерные РНК имеют последовательности протяженностью от 65 до 1000 и более нуклеотидов (10S -90S), богатые уридиловыми нуклеотидами, и поэтому называются также uPHK (Ul, U2 и т.д.). У дрожжей выявлено 25 различных мяРНК, у позвоночных животных - 15. У шпорцевых лягушек Xenopus laevis ряд мяРНК (U3, U8, U14 и U22) участвуют в процессинге рибосомальных РНК, связываясь с пограничными участками спейсерных последовательностей (см. рис. 143). Малые ядерные РНК выявлены не только у позвоночных животных и дрожжей, но также у насекомых и архибактерий. Они представляют собой, вероятно, очень древнюю группу молекул. Нуклеотидная последовательность всех соответствующих uPHK

эукариот совпадает более чем на 90 %, что, в частности, относится к U1 человека и дрозофилы. Высокий консерватизм структуры uPHK говорит о том, что сплайсинг представляет собой очень древний процесс, начавшийся с аутосплайсинга (см. выше) и трансформировавшийся в сплайсинг с участием особых рибонуклеопротеидных частиц - мяРНП. Гены мяРНК транскрибируются РНК-полимеразой II и имеют различную локализацию в геноме: часть из них представляет собой дискретные независимые гены,

не имеющие интронов, тогда как гены других мяРНК располагаются внутри интронов генов, кодирующих белки. Так, у Xenopus U13 кодируется тремя уникальными последовательностями, находящимися

в интронах 5, 6 и 8 генов белков теплового шока, а ген U16 находится внутри интрона рибосомального белка L1. Последнее обстоятельство имеет важное значение, так как показывает, что процессинг рРНК и процессинг мРНК белков рибосом может быть скоординирован при участии мяРНК. Кроме того,

предполагают, что мяРНК способны служить РНК-шаперонами, участвуя в фолдингерРНК, т.е. помогая ей принять необходимую структуру в пространстве. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малыерибонуклеопротеиновые частицы (мяРНП). Стабильным компонентом мяРНП является белок фибрилларин - очень консервативный по структуре белок с молекулярной массой 34 кДа, локализованный в ядрышках. Комплекс, состоящий из множества мяРНП, который катализирует сплайсинг ядерных про-мРНК, носит название сплайсингосомы .]

Известно, мяРНК типа U 1, содержит нуклеотидную последовательность, гомологичную 5"-концу интрона. Спаривание этих последовательностей дает начало сплайсоме. Затем к ней присоединяется мяРНК типа U2 , U4 , U5 и U6 начинается сплайсинг. Как и в случае интронов первой группы происходит две реакции трансэтерификации. Сначала З"- гидроксильная группа аденина (А), локализованного в интроне, взаимодействует с 5"-сайтом сплайсинга, разрезая цепь РНК. Затем несколько мяРНП формируют промежуточный комплекс и начинается вторая реакция: свободный 5"-конец интрона соединяется с остатком аденина. В результате формируется характерная петлеобразная структура типа лассо, содержащая удаленный интрон. Затем концы экзонов лигируют и комплекс мяРНК освобождает транскрипт.

[ Коничев, с.294. Взаимодействие разных мяРНК, входящих в состав сплайсингосомы, со сплайсируемой пре-мРНК в 5"- и З"-сайтах сообщает интрону петлеобразную структуру. При этом сближаются концы экзонов, чему способствует образование неканонических (отличающихся от уотсон-криковских пар) водородных связей между двумя гуанинами, содержащимися в 5"- и З"-сайтах сплайсинга (см. рис. 148). Сближение экзонов создает условие для атаки З"-конца интрона адениловым нуклеотидом, расположенным вблизи З"-конца. В результате разрыва фосфодиэфирной связи между экзоном 1 и 5"-концом интрона последний взаимодействует с адениловым нуклеотидом и образованием в интроне петли типа «лассо» (см. рис. 148_Коничев). Вслед за этим освободившийся З"-ОН-конец экзона 1 разрезает З"-сайт сплайсинга, выщепляет интрон и, соединяясь с экзоном 2, образует в итоге зрелую (сплайсированную) молекулу мРНК]

Кэпирование и полиаденилирование иРНК называется процессингом (посттранскрип-ционной модификацией).

Кэпирование:

К 5 " концу всех эукариотических иРНК присоединяется во время процессинга остаток 7-метилгуанозина с образованием уникальной 5 "à 5 " фосфодиэфирной связи . Этот дополнительный нуклеотид получил название кэп или колпачек.

Функции кэпа:

1. он защищает РНК от экзонуклеаз

2. помогает связыванию молекулы мРНК с рибосомой.

Полиаденилирование:

3"-конец также модифицируется сразу после завершения транскрипции. Специальный фермент – полиаденилат-полимераза присоединяет к 3"-концу каждого РНК-транскрипта от 20 до 250 остатков адениловой кислоты (поли(А)). Полиаденилатполимераза узнает специфическую последовательность AAУAAA, отщепляет от первичного транскрипта небольшой фрагмент в 11-30 нуклеотидов и затем присоединяет поли(А) последовательность. Принято считать, что такой "хвост" способствует последующему процессингу РНК и экспорту зрелых молекул мРНК из ядра.

По мере участия иРНК в процессах трансляции, длина полиА фрагмента уменьшается. Критическим для стабильности считается 30 адениловых нуклеотидов.

Вся совокупность ядерных транскриптов РНК-полимеразы II известна как гетерогенная ядерная РНК (гяРНК).

Все 3 класса РНК транскрибируются с генов, которые содержат интроны (неинформативные участки)и экзоны (участки ДНК, несущие информацию). Последовательности, кодируемые интронами ДНК, должны быть удалены из первичного транскрипта до того, как РНК станет биологически активной. Процесс удаления копий интронных последовательностей получил название сплайсинга РНК .

Сплайсинг РНК катализируется комплексами белков с РНК , известными как «малые ядерные рибонуклеопротеидные частицы» (мяРНП, англ. small nuclear ribonucleic particles, snRNP ).Такие каталитические РНК носят название рибозимов.

Функции интронов:

· защищают функционально активную часть генома клетки от повреждающего действия химических или физических (лучевых) факторов



· позволяет при помощи так называемого альтернативного сплайсинга увеличить генетическое разнообразие генома без увеличения числа генов.


Альтернативный сплайсинг:

В результате изменения распределение экзонов одного транскрипта во время сплайсинга возникают различные РНК и следовательно различные белки.

Известны уже более 40 генов, транскрипты которых подвергаются альтернативному сплайсингу. Например, транскрипт гена кальцитонина, в результате альтернативного сплайсинга дает РНК, которая служит матрицей для синтеза кальцитонина (в щитовидной железе) или специфического белка, отвечающего за вкусовое восприятие (в мозге). Еще более сложному альтернативному сплайсингу подвергается транскрипт гена -тропомиозина. Были идентифицированы по крайней мере 8 различных тропомиозиновых иРНК, полученных из одного транскрипта (см рис)

33 . Общая схема биосинтеза белка - необходимые предпосылки:

Информационный поток - схема передачи информации (центральная догма молекулярной биологии). Репликация и транскрипция ДНК - ферменты, механизм. Обратная транскрипция, роль ревертаз. Процессинг и сплайсинг иРНК. Характеристика генетического кода, кодон, антикодон.

Отличие биосинтеза белка от биосинтеза других молекул:

· Нет соответствия между числом мономеров матрицы и в продукте реакции (4 нуклеотида--20 аминокислот)

· Между мРНК (матрица) и пептидной цепью белка (продукт) нет комплементарности.

Общая схема биосинтеза белка - необходимые предпосылки:

· информационный поток (передача информации от ДНК на РНК и на белок)

· пластический поток (аминокислоты, мРНК, тРНК, ферменты)

· энергетический поток (макроэрги АТФ, ГТФ, УТФ, ЦТФ)

Все стадии процессинга и-РНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

По мере синтеза про-и-РНК, она тут же образует комплексы с ядерными белками – информоферами . И в ядерные, и в цитоплазматические комплексы и-РНК с белками (информосомы ) входят s-РНК (малые РНК).

Таким образом, и-РНК не бывает свободной от белков, поэтому на всем пути следования до завершения трансляции и-РНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

Пока вновь синтезированная про-и-РНК (первичный транскрипт или гя-РНК – гетерогенная ядерная РНК) еще находится в ядре, она подвергается процессингу и превращается в зрелую и-РНК, прежде чем начать функционировать в цитоплазме. Гетерогенная ядерная РНК копирует всю нуклеотидную последовательность ДНК от промотора до терминатора, включая нетранслируемые области. После этого гя-РНК претерпевает преобразования, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. Обычно гя-РНК в несколько раз (иногда в десятки раз) больше зрелой и-РНК. Если гя-РНК составляет примерно 10 % генома, то зрелая и-РНК – только 1-2 %.

В ходе ряда последовательных стадий процессинга из про-и-РНК (транскрипта) удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей.

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы про-и-РНК. По мере образования про-и-РНК (еще до 30-ого нуклеотида), к 5"-концу, несущему пуринтрифосфат, присоединяется гуанин, после чего происходит метилирование.

Функции кэп-группы:

ü регулирование экспорта и-РНК из ядра;

ü защита 5"-конца транскрипта от экзонуклеаз;

ü участие в инициации трансляции: узнавание молекулы и-РНК малыми субъединицами рибосомы и правильная установка и-РНК на рибосоме.

Полиаденилирование заключается в присоединении к 3"-концу транскрипта остатков адениловой кислоты, который осуществляет специальный фермент poly(A)-полимераза.

Когда синтез про-и-РНК завершен, то на расстоянии примерно 20 нуклеотидов в направлении к 3"-концу от последовательности 5"-AAУAA-3" происходит разрезание специфической эндонуклеазой и к новому 3"-концу присоединяется от 30 до 300 остатков АМФ (безматричный синтез).

Сплайсинг [англ. “splice” – соединять, сращивать]. После полиаденилирования про-и-РНК подвергается удалению интронов. Процесс катализируется сплайсосомами и называется сплайсингом. В 1978 г. Филипп Шарп (Массачусетский технологический институт) открыл явление сплайсинга РНК.

Сплайсинг показан для большинства и-РНК и некоторых т-РНК. У простейших найден автосплайсинг р-РНК. Сплайсинг показан даже для археобактерий.

Не существует единого механизма сплайсинга. Описано по крайней мере 5 разных механизмов: в ряде случаев сплайсинг осуществляют ферменты-матюразы, в некоторых случаях в процессе сплайсинга участвуют s-РНК. В случае автосплайсинга процесс происходит благодаря третичной структуре про-р-РНК.

Для и-РНК высших организмов существуют обязательные правила сплайсинга:

Правило 1 . 5" и 3" концы интрона очень консервативны: 5"(ГT-интрон-AГ)3" .

Правило 2 . При сшивании копий экзонов соблюдается порядок их расположения в гене, но некоторые из них могут быть выброшены.

Точность сплайсинга регулируют s-PНК: малые ядерные РНК (мя-РНК) , которые имеют участки, комплементарные концам интронов. мя-РНК комплементарна нуклеотидам на концах интронов – она временно соединяется с ними, стягивая интрон в петлю. Концы кодирующих фрагментов соединяются, после чего интрон благополучно удаляется из цепи.

③ ТРАНСЛЯЦИЯ [от лат. “translatio” – передача] заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в и-РНК. Молекула и-РНК (после процессинга у эукариот и без процессинга у прокариот) участвует в другом матричном процессе – трансляции (синтезе полипептида), который протекает на рибосомах (рис. 58).

Рибосомы – немембранные самые мелкие клеточные органоиды, при этом они едва ли не самые сложные. В клетке Е. coli присутствует около 10 3 – 5x10 3 рибосом. Линейные размеры прокариотической рибосомы 210 х 290Å. У эукариот – 220 х 320Å.

Выделяют четыре класса рибосом:

1. Прокариотические 70S.

2. Эукариотические 80S.

3. Рибосомы митохондрий (55S – у животных, 75S – у грибов).

4. Рибосомы хлоропластов (70S у высших растений).

S – коэффициент седиментации или константа Сведберга . Отражает скорость осаждения молекул или их компонентов при центрифугировании, зависящую от конформации и молекулярного веса.

Каждая рибосома состоит из 2-х субъединиц (большой и малой).

Сложность объясняется тем, что все элементы рибосом представлены в одном экземпляре, за исключением одного белка, присутствующего в 4 копиях в 50S субъединице, и не могут быть заменены.

р-РНК выполняют не только функцию каркасов субъединиц рибосом, но и принимают непосредственное участие в синтезе полипептидов.

23S р-РНК входит в каталитический пептидилтрансферазный центр, 16S р-РНК необходима для установки на 30S субъединице инициирующего кодона и-PHK, 5S р-РНК – для правильной ориентации аминоацил-тPHK на рибосоме.

Все р-РНК обладают развитой вторичной структурой: около 70% нуклеотидов собрано в шпильки.

р-РНК в значительной степени метилированы (СН 3 -группа во втором положении рибозы, а также в азотистых основаниях).

Порядок сборки субъединиц из р-РНК и белков строго определен. Субъединицы, не соединенные друг с другом, представляют собой диссоциированные рибосомы. Соединенные – ассоциированные рибосомы. Для ассоциации нужны не только конформационные изменения, но и ионы магния Mg 2+ (до 2x10 3 ионов на рибосому). Магний нужен для компенсации отрицательного заряда р-РНК. Все реакции матричного синтеза (репликация, транскрипция и трансляция) связаны с ионами магния Mg 2+ (в меньшей степени – марганца Мn 2+).

Молекулы т-РНК представляют собой относительно небольшие нуклеотидные последовательности (75-95 нуклеотидов), комплементарно соединённые в определённых участках. В результате формируется структура, напоминающая по форме лист клевера, в которой выделяют две наиболее важные зоны – акцепторная часть и антикодон.

Акцепторная часть т-РНК состоит из комплементарно соединённых 7 пар оснований и несколько более длинного одиночного участка, заканчивающегося 3′-концом, к которому присоединяется транспортируемая соответствующая аминокислота.

Другой важный участок т-РНК – антикодон , состоящий из трёх нуклеотидов. Этим антикодоном т-РНК по принципу комплементарности определяет себе место на и-РНК, определяя тем самым очерёдность присоединения транспортируемой им аминокислоты в полипептидную цепочку.

Наряду с функцией точного узнавания определённого кодона в и-РНК молекула т-РНК связывается и доставляет к месту синтеза белка определённую аминокислоту, присоединённую ферментом аминоацил-тРНК-синтетазы. Этот фермент обладает способностью к пространственному узнаванию, с одной стороны, антикодона т-РНК и, с другой, – соответствующей аминокислоты. Для транспортировки 20 типов аминокислот используются свои транспортные РНК.

Процесс взаимодействия и-РНК и т-РНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах.

Рибосомы представляют собой сложные комплексы рибосомной РНК (р-РНК) и разнообразных белков. Рибосомная РНК является не только структурным компонентом рибосом, но и обеспечивает связывание её с определённой нуклеотидной последовательностью и-РНК, устанавливая начало и рамку считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы с т-РНК.

В рибосомах имеются две зоны. Одна из них удерживает растущую полипептидную цепь, другая – и-РНК. Кроме того, в рибосомах выделяют два участка, связывающих т-РНК. В аминоацильном участке размещается аминоацил-т-РНК, несущая определённую аминокислоту. В пептидильном находится т-РНК, которая освобождается от своей аминокислоты и покидает рибосому при её перемещении на один кодон и-РНК.

В процессе трансляции выделяют следующие стадии :

1. Стадия активации аминокислот . Активация свободных аминокислот осуществляется при помощи особых ферментов (аминоацил-тРНК-синтетаз) в присутствии АТФ. Для каждой аминокислоты существует свой фермент и своя т-РНК.

Активированная аминокислота присоединяется к своей т-РНК с образованием комплекса аминоацил-т-РНК (аа-т-РНК). Только активированные аминокислоты способны образовывать пептидные связи и формировать полипептидные цепочки.

2. Инициация . Начинается с присоединения лидирующего 5"-конца и-РНК с малой субъединицей диссоциированной рибосомы. Соединение происходит так, что стартовый кодон (всегда АУГ) оказывается в «недостроенном» Р-участке. Комплекс аа-т-РНК с помощью антикодона т-РНК (УАЦ) присоединяется к стартовому кодону и-РНК. Имеются многочисленные (особенно у эукариот) белки – факторы инициации .

У прокариот стартовый кодон кодирует N-формилметионж, а у эукариот – N-метионин. В дальнейшем эти аминокислоты вырезаются ферментами и не входят в состав белка. После образования инициирующего комплекса происходит объединение субъединиц и «достраивание» Р- и А-участков (рис.60).

3. Элонгация . Начинается с присоединения в А-участок и-РНК второго комплекса аа-т-РНК с антикодоном, комплементарным следующему кодону и-РНК. В рибосоме оказываются две аминокислоты, между которыми возникает пептидная связь. Первая т-РНК освобождается от аминокислоты и покидает рибосому. Рибосома перемещается вдоль нити и-РНК на один триплет (в направлении 5"→3"). 2-я аа-т-РНК перемещается в Р-участок, освобождая А-участок, который занимает следующая 3-я аа-т-РНК. Таким же образом присоединяются 4-я, 5-я и т. д. аминокислоты, принесенные своими т-РНК.

4. Терминация . Завершение синтеза полипептидной цепочки. Наступает тогда, когда рибосома дойдет до одного из терминирующих кодонов. Имеются особые белки (факторы терминации ), которые узнают эти участки.

На одной молекуле и-РНК может располагаться несколько рибосом (такое образование называется полисома), что позволяет осуществлять синтез нескольких полипептидных цепей одновременно

Процесс биосинтеза белка проходит с участием большего количества специфических биохимических взаимодействий. Он представляет собой фундаментальный процесс природы. Несмотря на чрезвычайную сложность (особенно в клетках эукариот), синтез одной молекулы белка длится всего 3-4 секунды.

Аминокислотная последовательность выстраивается при помощи транспортных РНК (т-РНК), которые образуют с аминокислотами комплексы - аминоацил-тРНК. Каждой аминокислоте соответствует своя т-РНК, имеющая соответствующий антикодон, «подходящий» к кодону и-РНК. Во время трансляции рибосома движется вдоль и-РНК, по мере этого наращивается полипептидная цепь. Биосинтез белка обеспечивается за счет энергии АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки, но для достижения своего активного состояния белкам требуется дополнительная посттрансляционная модификация.

Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включаеттрансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.

19.ДНК. Строение, свойства, кодовая система.

  • Задание 1. Ознакомиться с внешним видом и ультраструктурой эукариотных клеток.
  • Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).
  • Клетка - элементарная, генетическая и структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.
  • Лекция № 11. Антигены, основные свойства. Антигены гистосовместимости. Процессинг антигенов.
  • Органоиды эукариотической клетки, их функции и гипотезы происхождения.
  • Принцип регуляции генной активности у прокариот (модель оперона) и эукариот.
  • Энхансеры.

    Усиливающие транскрипцию при взаимодействии со специфическими белками. Энхансеры это не непрерывная – прерывающиеся последовательности ДНК. Они организованы в модули (М1, М2, М3, М4). Одинаковые модули могут встречаться в разных энхансерах, но для каждого энхансера набор модулей уникален. Модуль это короткая последовательность, состоящая не более чем из 2х витков спирали – примерно 20 нуклеотидных пар. Модули ориентированы перед, за и даже внутри гена. Таким образом М1, М2, М3 и М4 это один энхансер состоящий из 4х модулей. Каждый из них узнаётся своими белками, а они в свою очередь взаимодействуют друг с другом. Если в клетке присутствуют все соответствующие белки, то участку ДНК придаётся определённая конформация и начинается синтез мРНК.

    Актуализация. Все соматические клетки многоклеточного эукариотического организма имеют одинаковый набор генов. Все гены в них работают на фоновом уровне и не имеют фенотипического проявления, а экспрессируются лишь те, у которых все энхансерные модули узнаны своими белками и эти белки взаимодействуют друг с другом.

    Сайленсоры. Это последовательности ослабляющие транскрипцию при взаимодействии с белками. При соответствующем наборе белков экспрессия отдельных генов может быть подавлена.

    Некоторые реперссированые (не экспрессирующиеся) гены активируются каскадом событий, запускаемым повышением температуры или синтезом гормона. Гормон, поступив в кровоток, связывается с рецепторами, проникает в клетку, взаимодействует с клеточными белками, изменяет их конформацию, такой белок проникает в ядро, связывается с регуляторным элементом, происходит инициация транскрипции соответствующих генов. Есть белки, которые взаимодействуя с регуляторными элементами блокируют транскрипцию. Например: белок NRSF блокирует транскрипцию соответствующих генов, в нейронах этот белок не синтезируется и как следствие идёт активная транскрипция.

    Процессинг РНК у эукариот.

    Посттарнскрипционному Ему подвергаются все РНК. Процессинг рРНК и тРНК принципиально не отличается от прокариот.

    Процессинг мРНК эукариот

    1. Кэпирование. Все 100% синтезированных мРНК. Кэп – метилированый гуанозинтрифосфат присоединенный в необычной позиции (5’ к 5‘)и две метилированые рибозы.



    Функции: узнавание кэп-связывающих белков, защита от действии экзонуклеаз

    По мере образования про-мРНК (до 30 нуклеотидов) к 5» концу несущему обязательно пурин (аденин, гуанозин) присоединяется гуанин, который затем метилируется. Участие – гуанинтрансферазы.

    2. Полиаденилирование. Только 95% всех мРНК и именно эти 95% вступают в этап сплайсинга. Другие 5% не подвергаются сплайсингу и эта матричная РНК в которой зашифрованы альфа и бета интерфероны и белки гистоны.

    После завершения синтеза мРНА, полиаденидированию предшествует разрезание специфической эндо кулеазо). Ближе 3» концу про-мРНК, а именно через 20 нуклеотидов после специфической последовательности (ААУАА) синтез безматричный. у каждого вида мРНК полиАхвост определённой длины, покрыт полиАсвязывающими белками. Врея жизни мРНК коррелирует с длиной полиАхвоста.

    3. Сплайсингу подвергаются 95% мРНК. Ф. Шарп, 1978 год. Копии вырезанных интронов гидролизуются до нуклеотидов. Осуществляется матюразами. Иногда в сплайсинге участвует sРНК. Правила: 1. фланкированы GT-AG, 2. Нуерация остаётся, но может быть вместе с интронами вырезан экзон.



    Цис-сплайсинг (внутримолекулярный сплайсинг) осуществляется в ядре. На первом этапе происходит сборка комплекса сплайсинга. Далее происходит расщепление в 5»сайте сплайсинга, в ходе реакции накапливается два продукта – правильно лигированые экзоны и свободный целый интрон в виде структуры типа «лассо». Множество ядерных факторов белков и рибонуклеопротеидных комплексов - Малые ядерные рибонуклеопротеиды. Этот комплекс, который катализирует сплайсинг, называют сплайсингосомой. Она состоит из интрона, связанного минимум с 5ю мя рнп и некоторыми вспомогательными белками. Сплайсингосомы образуются путём спаривания молекул РНК, присоединением белков к РНК и связыванием этих белков друг с другом. Конечным продуктом такого сплайсинга является вырезание интрона и сшивание фланкирующих его экзонов.

    Транс-сплайсинг это пример межмолекулярного сплайсинга. Показан для всех мРНК у трипаносомы и продемонстрирована в опятах ин витро. В ходе него происходит лигирование двух экзонов находящихся в разных молекулах РНК с одновременным удалением фланкирующих их интронов.

    Альтернативный сплайсинг обнаружен от дрозофилы до человека и вирусов и показан он для генов, кодирующих белки, участвующие в формировнаии цитоскелета, мышечных сокращений, сборке мемебранных рецепторов, пептидных гормонов, в промежуточном метаболизме и транспозиции ДНК. В сплайсингосоме этот процесс тоже идёт, связан с ферментами занимающимися полиаденилированием. Таким образом мРНК на всём пути следования до завершения трансляции, защищена от нуклеаз с помощью связанных с ней белков (информоферы). Комплекс мРНК с информоферами с ифнормосомы, плюс сРНК. В составе информосом мРНК живёт от нескольких минут до нескольких дней.

    4. Редактирование

    Сплайсинг тРНК.

    Интроны в генах тРНК локализованы через один нуклеотид после антикодона ближе к 3»концу тРНК. От 14 до 60 нуклеотидов. Механизм сплайсинга тРНК лучше всего изучен у дрожжей, а так же в опытах с другими низшими эукариотами и растениями. Задача вырезания интрона в антикодоновой петле реализуется за счёт участия:

    Эндонуклеаз (узнать интрон и расщепить про-тРНК в обоих сайтах сплайсинга с образованием свободных 3» и 5»концов экзонов)

    Полифункциональный белок (катализирующий все реакции кроме последней – фосфатазной)

    2»фосфатаза (удаляет монофосфат с 2»конца 5»концевого экзона)

    Лигаза (сшивает)

    Сплайсинг рРНК.

    Гены ядерных рРНК низших эукариот содержат особые интроны, которые претерпевают уникальный механизм сплайсинга. Это интроны группы I, их нет в генах позвоночных. Общие свойства: сами катализируют свой сплайсинг (автосплайсинг), информация для сплайсинга содержится в коротких внутренних последовательностях внутри интрона(эти последовательности обеспечивают укладку молекулы с образованием характерной пространственной структуры), этот сплайсинг инициируется свободным гуанозином (экзогенным) или любым из его 5»фосфорилированых производных, конечными продуктами являются зрелая рРНК линейная РНК и кор-интроны (кольцевые)

    Автоспласинг 1982 г., на инфузория, Томас Чек

    Этот процесс чувствителен к ионам магния. Этот сплайсинг показывает что каталитической активностью облажают не только белки но и про-рРНК. Самосплайсинг интронов 1 группы осуществляется последовательно реакций транс-этерификации, где процессы фосфодиэфирного обмена не сопровождаются гидролизом.

    Сплайсинг интронов группы 2 мало распространены, обнаружены в 2х митохондриальных генах дрожжей: ген одной из субъединиц цитохромоксидазы и ген цитохрома Б. так же подвергаются самосплайсингу, но инициация сплайсинга и дёт при участии эндогенного гуанозина, то есть гуанозина находящегося в самом интроне. Высвобожденные интроны – подобны лассо, где 5»концевой фосфат РНК интрона соединён фосфодиэфирной связью с 2»гидроксильной группы внутреннего нуклеотида.

    Регуляция экспрессии генов у эукариот

    Процессинг рРНК: нарезание первичноготранскрипта, метилирование, сплайсинг. Уэукариот все рРНК синтезируются как часть одного транскрипта. Он нарезается с помощью экзо и эндонуклеаз на зрелыерРНК. Предшественник содержит 18, 5.8, 28S рРНК и называется 45S РНК. Процессинг рРНК требует участия мяРНК. У некоторых организмов в составе предшественника 28S РНК находятся вставки/интраны, кот.удаляются в результате процессинга и фрагменты РНК сшиваются в результате сплайсинга.

    Упрокариот предшественник рРНК содержит 16, 23, 5S рРНК + несколько предшественников тРНК. 3 и 5’ концы сближены за счет комплиментарно прилегающих пар оснований. Такая структура разрезается РНКазойIII. Оставшиесярибонуклеотиды отрезаются экзонуклеазами/подравнивание. Процессинг 5’конца тРНК осуществляется РНКазой, а 3’конца – РНКазойД.тРНК-нуклеотидилтрансфераза достраивает ССА-хвост.

    У эукариот предшественник тРНК содержит в себе интрон, он не ограничен консервативными последовательностями и встроен в антикодоновую петлю. Трекбуется удаление интронов и сплайсинг. В основе сплайсинга – узнавание вторичной структуры тРНК, требует участия ферментров с нуклеазной (расщипляют РНК на границкэкзон-интрон с двух сторон) и лигазной (сшивание свободных 3 и 5’-конов) активности. После высвобождения интронатРНК сворачивается в обычную структуру.

    Процессинг мРНК. Модификация 5’-конца (кэпирование). Модификация 3’-конца (полиаденилирование). Сплайсинг первичных транскриптовмРНК, сплайсосома. Автосплайсинг. Альтернативный сплайсинг.

    Процессинг пре-мРНК эукариот состоит из нескольких этапов:

    1. Отрезание лишних длинных концевых последовательностей.

    2. Присоединение к 5’-концу последовательности КЭПа, в котором обязательно присутствует 7-метилгуанозин, с которого начинается КЭП. Далее располагается 1-3 метилированныхрибонуклеотидов. Предполагают, что КЭП необходим для стабилизации мРНК, предохраняя ее от расщепления 5’-экзонуклеазами, а также узнается рибосомой. Образование КЭПа дает возможность прохождения сплайсинга.

    3. Вырезание интронов и сплайсингэкзонов.

    В сплайсинге, как правило, участвуют особые рибонуклеопротеиновые частицы (РНП) - малые ядерные РНП (мяРНП), в состав которых входят мяРНК, богатые урацилом и обозначаемые U1-U6 (иногда называемые рибозимами) и многочисленные белки. Эти РНП-частицы на стыках интронов и экзонов образуют функциональный комплекс, получивший название сплайсосомы (сплайсмосомы). Функции U-частиц заключаются в распознавании сайтов сплайсинга. В частности, UI узнает 5’-концевой сайт сплайсинга, a U2 - 3’-концевой сайт. При этом происходит комплементарное взаимодействие и сближение между этими сайтами и соответствующими последовательностями в РНК U1 и U2 частиц. Таким образом, происходит выпетливаниеинтрона. Соседние экзоны входят в контакт друг с другом в результате взаимодействия между факторами, распознающими индивидуальные экзоны.

    Некоторые интроны удаляются с помощью автосплайсинга , не требуя никаких дополнительных компонентов, кроме самих пре-мРНК. Первым шагом является разрыв фосфодиэфирной связи в 5’-положении интрона, что приводит к отделению экзона 1 от молекулы РНК, содержащий интрон и экзон 2. 5’-конец интрона образует петлю и соединяется с нуклеотидом А, входящим в последовательность, называемую участком разветвления и расположенную выше 3’-конца интрона. В клетках млекопитающих участок разветвления содержит консервативную последовательность, ключевой А-нуклеотид в этой последовательности расположен в положении 18-28 пн выше 3’-конца интрона. У дрожжей этой последовательностью является UACUAAC. Интрон удаляется в форме лассо.

    В некоторых случаях в аминокислотные последовательности трансформируются не все экзоны. В результате с одного гена считывается несколько мРНК - альтернативныйсплайсинг . Кроме того использование альтернативных промоторов и терминаторов может изменять 5’и 3’ концы транскрипта.

    4. Добавление нуклеотидов к З’-концу последовательности из 150-200 адениловых нуклеотидов, осуществляемое специальными поли(А)-полимеразами.

    5. Модификация оснований в транскрипте. Очень часто при созревании пре-мРНК происходят химические превращения некоторых оснований, например превращение одного азотистого основания в другое (С в U или наоборот).

    Таким образом, в результате транскрипции образуются рибонуклеиновые кислоты. Таким образом, нуклеиновые кислоты обеспечивают поддержание жизнедеятельности клетки, путем хранения и экспрессии генетической информации, определяя биосинтез белка и получение организмом определенных признаков и функций.

    В клетках бактерий к готовому, начинающему отделяться от матрицы участку мРНК присоединяются рибосомы и сразу же начинают синтез белка. Так образуется единый транскрипционно-трансляционный комплекс, который можно обнаружить с помощью электронного микроскопа.

    Синтез РНК уэукариот проходит в ядре и отделен пространственно от места синтеза белка - цитоплазмы. У эукариот, вновь синтезированная РНК сразу же конденсируется с образованием множества рядом расположенных частиц, содержащих белок. В состав этих частиц входит РНК длиной приблизительно 5000 нуклеотидов, нить которой намотана на белковый остов, таким образом образуются гетерогенные ядерные рибонуклеопротеиновые комплексы (гяРНП). Гетерогенны они потому, что имеют разные размеры. Часть этих комплексов являются сплайсмосомами и участвуют в удалении инронов и сплайсингеэкзоновпремРНК.



    После процессинга зрелые молекулы мРНК эукариот узнаются рецепторными белками (входящими в состав ядерных пор), которые способствуют продвижению мРНК в цитоплазму. При этом основные белки, входящие в состав гяРНП никогда не покидают ядро и соскальзывают с мРНК по мере ее продвижения через ядерные поры.

    В цитоплазме мРНК снова соединяется с белками, но уже цитоплазматическими, образуя мРНП. При этом обнаруживаются свободные мРНП-частицы (цитоплазматические информосомы), а также мРНП, связанные с полисомами (комплексами рибосом) (полисомные информосомы). Связанные с полисомамимРНК активно транслируются. Белки, связанные с информосомами, обеспечивают хранение в цитоплазме мРНК в нетранслируемом положении. Переход мРНК к полисомам сопровождается сменой белков - отщеплением или модификацией репрессорных белков и связыванием активаторных белков. Таким образом, в эукариотических клетках мРНК всегда находится в комплексе с белками, которые обеспечивают хранение, транспорт и регуляцию активности мРНК.

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Юридический портал. Льготный консультант