Юридический портал. Льготный консультант

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода
). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом:
, гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

Е , МэВ

Уровни энергии

и наблюдаемые переходы для ядра атома бора

Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра
.Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.

Протон представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в опытах Дж. Томсона (1907 г.), которому удалось измерить у нее отношение e /m . В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер.

Схема опытов Резерфорда представлена .

Описание установки, с помощью которой удалось зарегистрировать нейтрон, можно посмотреть .

В отличие от электронов, протоны и нейтроны подвержены действию специфических ядерных сил. Ядерные силы являются частным случаем самых интенсивных в природе сильных взаимодействий. За счет ядерных сил протоны и нейтроны могут соединяться друг с другом, образуя различные атомные ядра.

Свойства протона и нейтрона по отношению к сильным взаимодействиям совершенно одинаковы, чем, по-видимому, и объясняется близость их масс. Поэтому в ядерной физике часто используется термин нуклон, обозначающий любую частицу, входящую в состав ядра, - как протон, так и нейтрон. Можно сказать, что протон и нейтрон являются двумя состояниями одной и той же частицы - нуклона.

Атом электрически нейтрален. Поэтому число протонов в ядре атома должно равняться числу электронов в атомной оболочке, т.е. атомному номеру Z . Общее число нуклонов (т.е. протонов и нейтронов) в ядре обозначается через A и называется массовым числом. Числа Z и A полностью характеризуют состав ядра. По определению:

A = Z + N.

Для обозначения различных ядер обычно используется запись вида Z X A , где X - химический символ, соответствующий элементу с данным Z . Например, выражение 4 Ве 9 обозначает ядро атома бериллия с Z = 4, A = 9, имеющее 4 протона и 5 нейтронов. Левый нижний индекс не является необходимым, поскольку атомный номер Z однозначно определяется названием элемента. Поэтому часто употребляется сокращенное обозначение типа Be 9 (читается «бериллий девять» ).

Ядра с одним и тем же Z и разными A называются изотопами. Например, у урана (Z = 92) есть изотопы 92 U 236 , 92 U 238 . Иногда употребляются термины изобары (для ядер с одинаковыми A и разными Z ) и изотоны (для ядер с одинаковыми N и разными Z ). Для обозначения атомов определенного изотопа используется термин нуклид.

Самым тяжелым из имеющихся в природе элементов является изотоп урана 92 U 238 . Элементы с атомными номерами больше 92 называются трансурановыми. Все они получены искусственно в результате различных ядерных реакций.

По своим чисто ядерным свойствам различные изотопы, как правило, имеют мало общего. Но в подавляющем большинстве случаев атомы различных изотопов обладают одинаковыми химическими и почти одинаковыми физическими свойствами, поскольку на структуру электронной оболочки атома ядро влияет практически только своим электрическим зарядом. Поэтому выделение какого-либо изотопа, например U 235 из его собственной смеси с 92 U 238 , является сложной технологической задачей, для решения которой используются небольшие различия в скоростях испарения, диффузии и некоторых других процессов, возникающие за счет различия масс изотопов.

Атомный номер Z равен электрическому заряду ядра в единицах абсолютной величины заряда электрона. Электрический заряд является целочисленной величиной, строго сохраняющейся при любых (в том числе и при неэлектромагнитных) взаимодействиях. Совокупность имеющихся экспериментальных данных о взаимопревращениях атомных ядер и элементарных частиц показывает, что кроме закона сохранения электрического заряда существует аналогичный, строгий закон сохранения барионного заряда. Именно, каждой частице можно присвоить некоторое значение барионного заряда, причем алгебраическая сумма барионных зарядов всех частиц остается неизменной при каких угодно процессах.

Барионные заряды всех частиц целочисленные. Барионный заряд электрона и γ-кванта равен нулю, а барионные заряды протона и нейтрона равны единице. Поэтому массовое число А является барионным зарядом ядра. Закон сохранения барионного заряда обеспечивает стабильность атомных ядер. Например, этим законом запрещается выгодное энергетически и разрешенное всеми остальными законами сохранения превращение двух нейтронов ядра в пару легчайших частиц γ-квантов.

Атомные ядра могут существовать лишь в ограниченной области значений величин A , Z . Вне этой области, если соответствующее ядро и возникает, то оно мгновенно (т.е. за характерное ядерное время τ ≤ 10 −21 с ) либо распадается на более мелкие ядра, либо испускает протон или нейтрон. Внутри области возможного существования далеко не все ядра стабильны.


Рисунок 2.1. Протонно-нейтронная диаграмма атомных ядер.

Известные к настоящему времени ядра нанесены на проточно-нейтронной диаграмме (рисунок 2.1). На ней плавными сплошными линиями обозначена теоретическая граница области возможного существования ядер. Экспериментальное установление этой границы затруднено тем, что при приближении к ней (изнутри) времена жизни ядер хотя и значительно превышают характерные (~10 −21 с ), но слишком малы для современной экспериментальной техники. Стабильные ядра образуют на протонно-нейтронной диаграмме дорожку стабильности.

Заслуживают упоминания следующие эмпирические факты и закономерности в отношении A и Z для стабильных ядер:

  1. Известны ядра со всеми значениями Z от 0 до 107 включительно (ядром с Z = 0, N = 1 является нейтрон). Не существует стабильных, т.е. не подверженных самопроизвольному радиоактивному распаду, ядер при Z = 0, 43, 61 и Z 84.
  2. Известны ядра со значениями A от 1 до 263 включительно. Не существует стабильных ядер при A = 5, 8 и при A ≥ 210.
  3. Свойства ядер существенно зависят от четности чисел Z и N . Это видно уже из того, что среди стабильных изотопов больше всего четно-четных (четные Z , N ) и меньше всего нечетно-нечетных (нечетные Z , N ), которых известно всего четыре: 1 D 2 , 3 Li 6 , 5 B 10 и 7 N 14 .
  4. При малых A стабильные ядра содержат примерно одинаковое число протонов и нейтронов, а при увеличении A процентное содержание нейтронов возрастает.
  5. Большинство химических элементов имеет по нескольку изотопов. Рекорд здесь принадлежит олову (50 Sn), обладающему десятью стабильными изотопами. С другой стороны, некоторые элементы, например Be, Na, Al, обладают только одним стабильным изотопом.

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели атома, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы - ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д.

В настоящее время твердо установлено, что атомные ядра различных элементов состоят из частиц двух видов - протонов и нейтронов .

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в 1907 г. в опытах Дж. Томсона, которому удалось измерить у нее отношение e / m . В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер. Схема опытов Резерфорда представлена на рис. 6.5.1.

Прибор Резерфорда состоял из вакуумированной камеры, в которой был расположен контейнер К с источником α-частиц. Окно камеры было закрыто металлической фольгой Ф, толщина которой была подобрана так, чтобы α-частицы не могли через нее проникнуть. За окном располагался экран Э, покрытый сернистым цинком. С помощью микроскопа М можно было наблюдать сцинтилляции (т. е. световые вспышки) в точках попадания на экран тяжелых заряженных частиц. При заполнении камеры азотом низкого давления на экране возникали световые вспышки, указывающие на появление потока каких-то частиц, способных проникать через фольгу Ф, практически полностью задерживающую поток α-частиц. Отодвигая экран Э от окна камеры, Резерфорд измерил среднюю длину свободного пробега наблюдаемых частиц в воздухе. Она оказалась приблизительно равной 28 см, что совпадало с оценкой длины пробега H-частиц, наблюдавшихся ранее Дж. Томсоном. Исследования действия на частицы, выбиваемые из ядер азота, электрических и магнитных полей показали, что эти частицы обладают положительным элементарным зарядом и их масса равна массе ядра атома водорода. Впоследствии опыт был выполнен с целым рядом других газообразных веществ. Во всех случаях было обнаружено, что из ядер этих веществ α-частицы выбивают H-частицы или протоны.

По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10 -19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10 -22 . Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.

Масса протона , по современным измерениям, равна m p = 1,67262∙10 -27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной массы атома углерода с массовым числом 12:

Следовательно, m p = 1,007276 а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc 2 . Так как 1 эВ = 1,60218·10 -19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ.

Таким образом, в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов .

После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, т. е. при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд.

В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование - частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице - нейтрон . Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, т. е. области размером R ≈ 10 -13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу. Однако идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Джеймсом Чедвиком заняться ее поиском. Через 12 лет, в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон. На рис. 6.5.2 приведена упрощенная схема установки для обнаружения нейтронов.

При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10-20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Ирен и Фредерик Жолио-Кюри (Ирен - дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость. Она оказалась огромной - порядка 50 МэВ.

Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 6.5.2 изображен счетчик Гейгера , предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона , в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать. Действие камеры Вильсона, созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях.

Дж. Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100-150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы. Эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона - частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика.

Нейтрон - это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд.

По современным измерениям, масса нейтрона m n = 1,67493∙10 -27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона.

Сразу же после открытия нейтрона российский ученый Д.Д Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами .

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e - элементарный заряд. Число нейтронов обозначают символом N .

Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A :

A = Z + N .

Ядра химических элементов обозначают символом , где X - химический символ элемента. Например,

Водород, - гелий, - углерод, - кислород, - уран.

Ядра одного и того же химического элемента могут отличаться числом нейтронов. Такие ядра называются изотопами . У большинства химических элементов имеется несколько изотопов. Например, у водорода их три: - обычный водород, - дейтерий и - тритий. У углерода - 6 изотопов, у кислорода - 3.

Химические элементы в природных условиях обычно представляют собой смесь изотопов. Существование изотопов определяет значение атомной массы природного элемента в периодической системе Менделеева. Так, например, относительная атомная масса природного углерода равна 12,011.

В 20 -х годах XX века сомнений насчет сложности строения открытых Резерфордом в 1911 году ядер атомов у физиков уже не оставалось. На данный факт указывало большое количество различных совершенных к тому времени время экспериментов, таких как:

  • открытие явления радиоактивности,
  • опытное доказательство ядерной модели атома,
  • измерение отношения e m для электрона, α -частицы и для H -частицы, представляющей собой ядро атома водорода,
  • открытие искусственной радиоактивности и ядерных реакций,
  • измерение зарядов атомных ядер и многие другие.

Из каких же частиц состоят ядра атомов? В наше время является фактом то, что ядра атомов различных элементов состоят из двух видов частиц, то есть из нейтронов и протонов. Вторая из этих частиц является лишившийся единственного своего электрона атомом водорода. Такая частица была замечена уже в опытах Дж. Томсона 1907 года. Ученый смог измерить у нее отношение e m .

Определение 1

Э. Резерфордом в 1919 году были обнаружены в продуктах расщепления ядер атомов значительного числа элементов атомные ядра водорода. Физиком найденной частице было дано название протона . Он предположил, что в состав любого из ядер атомов входят протоны.

Схема опытов Резерфорда проиллюстрирована на рисунке 6 . 5 . 1 .

Рисунок 6 . 5 . 1 . Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α -частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М представляет собой микроскоп.

Прибор Резерфорда состоял из вакуумированной камеры с расположенным в ней контейнером К , в котором находился источник α -частиц. Металлическая фольга, на рисунке обозначенная как Ф , перекрывала окно камеры. Толщина фольги подбиралась таким образом, чтобы предотвратить проникание через нее α -частиц. За окном был расположен покрытый сернистым цинком экран, на изображении 6 . 5 . 1 отмеченный буквой Э. Применяя микроскоп М , можно было наблюдать световые вспышки или, как их еще называют, сцинтилляции в точках, в точках экрана, в которых происходило попадание тяжелых заряженных частиц.

В процессе заполнения камеры азотом с низким давлением на экране обнаруживались световые вспышки. Данное явление указывало на тот факт, что в условиях эксперимента существует поток неизвестных частиц, обладающих способностью проникать сквозь практически полностью задерживающую поток α -частиц фольгу Ф . Раз за разом удаляя от окна камеры экран Э. Резерфорд смог измерить среднюю длину свободного пробега наблюдаемых частиц в воздухе. Полученная величина оказалась приблизительно равной 28 с м, что совпадало с оценкой длины пробега наблюдавшихся ранее Дж. Томсоном H -частиц.

С помощью исследований воздействия электрических и магнитных полей на выбиваемые из ядер азота частицы были получены данные о положительности их элементарного заряда. Также было доказано, что масса таких частиц эквивалентна массе ядер атомов водорода.

Впоследствии опыт выполнили с целым рядом других газообразных веществ. Во всех проведенных подобных опытах было обнаружено, что из их ядер α -частицы выбивают H -частицы или протоны.

Согласно современным измерениям, положительный заряд протона абсолютно эквивалентен элементарному заряду e = 1 , 60217733 · 10 – 19 К л. Другими словами, по модулю он равен отрицательному заряду электрона. В наше время равенство зарядов протона и электрона проверено с точностью 10 – 22 . Подобное совпадение зарядов двух значительно отличающихся друг от друга частиц вызывает искреннее недоумение и по сей день остается одной из фундаментальных загадок современной физики.

Определение 2

Опираясь на современные измерения, можно заявить, что масса протона равна m p = 1 , 67262 · 10 – 27 к г. В условиях ядерной физики принадлежащую частицам массу нередко выражают в атомных единицах массы (а. е. м.) , равных массы атома углерода с массовым числом 12:

1 а. е. м. = 1 , 66057 · 10 - 27 к г.

Соответственно, m p = 1 , 007276 а. е. м.

Довольно часто выражение массы частицы наиболее удобно при использовании эквивалентных значений энергии в соответствии со следующей формулой: E = m c 2 . По причине того, что 1 э В = 1 , 60218 · 10 – 19 Д ж, в энергетических единицах масса протона равняется 938 , 272331 М э В.

Следовательно, опыт Резерфорда, открывший явление расщепления ядер азота и иных элементов таблицы Менделеева в условиях ударов быстрых α -частиц, также показал, что в состав атомных ядер входят протоны.

Вследствие открытия протонов у некоторых физиков появилось предположение, что новые частицы не просто входят в состав ядер атомов, а являются его единственными возможными элементами. Однако по причине того, что отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны, данное предположение было признано несостоятельным. Для более тяжелых ядер такое отношение оказывается меньше, чем для легких, из чего следует, что при переходе к более тяжелым ядрам масса ядра возрастает быстрее заряда.

В 1920 году Э. Резерфордом была высказана гипотеза о присутствии в составе ядер некой компактной жестко связанной пары, состоящей из электрона и протона. В понимании ученого данная связка являлась электрически нейтральным образованием в качестве частицы, обладающей практически эквивалентной массе протона массой. Им также было придумано название для данной гипотетической частицы, Резерфорд хотел назвать ее нейтроном. К сожалению, приведенная идея, несмотря на свою красоту, была ошибочной. Было выяснено, что электрон не может являться частью ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что локализованный в ядре, т. е. области размером R ≈ 10 – 13 с м, электрон должен обладать невероятной кинетической энергией, которая на много порядков превосходит энергию связи ядер в расчете на одну частицу.

Идея о существовании некой тяжелой нейтрально заряженной частицы в составе ядра была крайне привлекательна для Резерфорда. Ученый незамедлительно обратился к группе своих учеников во главе с Дж. Чедвиком с предложением заняться ее поисками. По прошествии 12 лет, в 1932 году Чедвик провел экспериментальное исследование излучения, возникающего в условиях облучения бериллия α -частицами. В процессе он обнаружил, что данное излучение является потоком нейтральных частиц, обладающих массой, практически эквивалентной массе протона. Таким образом был открыт нейтрон. На рисунке 6 . 5 . 2 проиллюстрирована упрощенная схема установки для обнаружения нейтронов.

Рисунок 6 . 5 . 2 . Схема установки для обнаружения нейтронов.

В процессе бомбардировки бериллия испускаемыми радиоактивным полонием α -частицами появляется мощное проникающее излучение, способное пройти сквозь преграду в виде 10 - 20 сантиметрового слоя свинца. Данное излучение практически в то же время, что и Чедвик обнаружили супруги дочь Марии и Пьера Кюри Ирен и Фредерик Жолио-Кюри, однако ими было выдвинуто предположение, что это γ -лучи большой энергии. Они заметили, что если на пути излучения бериллия установить парафиновую пластину, то ионизирующая способность данного излучения скачкообразно увеличивается. Супруги доказали, что излучение бериллия выбивает из парафина в большом количестве имеющиеся в приведенном водородосодержащем веществе протоны. Используя значение длины свободного пробега протонов в воздухе, учеными была оценена энергия γ -квантов, обладающих способностью в условиях столкновения сообщать протонам нужную скорость. Полученное в результате оценки значение энергии оказалось огромным – около 50 М э В.

В 1932 Дж. Чедвиком была выполнена целая серия из экспериментов, направленных на всестороннее изучение свойств излучения, которое возникает при облучении бериллия α -частицами. В своих опытах Чедвик применял разные методы исследования ионизирующих излучений.

Определение 3

На рисунке 6 . 5 . 2 проиллюстрирован счетчик Гейгера , прибор, использующийся для регистрации заряженных частиц.

Данное устройство состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом, обычно в его качестве выступает аргон, при низком давлении. Заряженная частица в процессе перемещения в газе вызывает ионизацию молекул.

Определение 4

Возникающие в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается явление ударной ионизации. Появляется лавина ионов, и через счетчик проходит короткий разрядный импульс тока.

Определение 5

Еще одним обладающим чрезвычайной важностью для исследования частиц прибором является камера Вильсона , в которой быстрая заряженная частица оставляет след или, как его еще называют, трек.

Траекторию частицы можно фотографировать или наблюдать непосредственно. Фундаментом действия созданной в 1912 году камеры Вильсона является явление конденсации перенасыщенного пара на ионах, которые образуются в рабочем объеме камеры вдоль траектории заряженной частицы. При помощи камеры Вильсона появляется возможность наблюдения искривления траектории заряженной частицы в электрическом и магнитном полях.

Доказательство 1

В своих экспериментах Дж. Чедвик наблюдал в камере Вильсона следы испытавших столкновение с бериллиевым излучением ядер азота. Основываясь на данных опытах, ученый оценил энергию γ -кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Полученное значение равнялось 100 – 150 М э В. Настолько огромной энергией не могли обладать испущенные бериллием γ -кванты. Исходя из этого факта, Чедвик заключил, что из бериллия при воздействии α -частиц вылетают не безмассовые γ -кванты, а достаточно тяжелые частицы. Данные частицы обладали немалой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, соответственно, они были электронейтральны. Таким образом было доказано существование нейтрона – частицы, которую предсказал Резерфорд более чем за 10 лет до опытов Чедвика.

Определение 6

Нейтрон представляет собой элементарную частицу. Ошибочным будет ее представление в виде компактной протон-электронной пары, как изначально предполагал Резерфорд.

Исходя из результатов современных измерений, мы можем сказать, что масса нейтрона m n = 1 , 67493 · 10 – 27 к г = 1 , 008665 а. е. м.

В энергетических единицах масса нейтрона эквивалентна 939 , 56563 М э В. Масса нейтрона примерно на две электронные массы превосходит массу протона.

Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко на пару с немецким физиком В. Гейзенберг выдвинул гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями.

Определение 7

Протоны и нейтроны принято называть нуклонами .

Для характеристики атомных ядер вводится ряд обозначений.

Определение 8

Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева).

Заряд ядра равен Z e , где e – элементарный заряд. Число нейтронов обозначают символом N .

Определение 9

Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом ядра A:

Определение понятия изотопа

Ядра химических элементов обозначают символом X Z A , где X – химический символ элемента. Например,
H 1 1 – водород, He 2 4 – гелий, C 6 12 – углерод, O 8 16 – кислород, U 92 238 – уран.

Определение 10

Число нейтронов в ядрах одного и того же химического элемента может быть различным. Такие ядра называются изотопами .

Большая часть химических элементов обладает несколькими изотопами. Например, у водорода их три: H 1 1 – обычный водород, H 1 2 – дейтерий и H 1 3 – тритий. У углерода – 6 изотопов, у кислорода – 3 .

Химические элементы в природных условиях чаще всего представляют собой смесь изотопов. Существование изотопов определяет значение атомной массы природного элемента в периодической системе Менделеева. Так, к примеру, относительная атомная масса природного углерода равняется 12 , 011 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро – центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома – атома водорода – состоит из одной элементарной частицы – протона.

Диаметр ядра атома равен примерно 10 -13 – 10 -12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95 – 99,98 %) сосредоточена в ядре. Если бы удалось получить 1 см 3 чистого ядерного вещества, масса его составила бы 100 – 200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.

Протон – элементарная частица, ядро атома водорода. Масса протона равна 1,6721х10 -27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66х10 -19 Кл. Кулон – единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).

Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть, от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон – это водород, если 26 протонов – это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).

Н ейтрон – электрически нейтральная частица с массой 1,6749 х10 -27 кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии – нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой – А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A – Z.

Электрон – элементарная частица, носитель наименьшей массы – 0,91095х10 -27 г и наименьшего электрического заряда – 1,6021х10 -19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.

Позитрон – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.

Различные типы ядер называют нуклидами. Нуклид – вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом): 17 35 Cl, 17 37 Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.

Изотопы обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А – массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32 Р, 33 Р или 15 32 Р и 15 33 Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор – 32, фосфор – 33.

Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1 Н-протия, известен тяжелый водород 2 Н-дейтерий и сверхтяжелый водород 3 Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.

В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.

Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, изотопы углерода 12 С и 14 С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90 Sr, 131 J, 137 Cs.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Юридический портал. Льготный консультант